Chicken Insulin-Like Growth Factor 2 Mrna-Binding Protein 1, IGF2BP1 ELISA kit from Bioassay Technology Laboratory

Supplier Page

Supplier Page from
Bioassay Technology Laboratory for
Chicken Insulin-Like Growth Factor 2 Mrna-Binding Protein 1, IGF2BP1 ELISA kit

Get Pricing

Description

RNA-binding factor that recruits target transcripts to cytoplasmic protein-RNA complexes (mRNPs). This transcript 'caging' into mRNPs allows mRNA transport and transient storage. It also modulates the rate and location at which target transcripts encounter the translational apparatus and shields them from endonuclease attacks or microRNA-mediated degradation. Plays a direct role in the transport and translation of transcripts required for axonal regeneration in adult sensory neurons (By similarity). Regulates localized beta-actin/ACTB mRNA translation in polarized cells, a crucial process for cell migration and neurite outgrowth. Co-transcriptionally associates with the ACTB mRNA in the nucleus. This binding involves by a conserved 54-nucleotide element in the ACTB mRNA 3'-UTR, known as the 'zipcode'. The ribonucleoparticle (RNP) thus formed is exported to the cytoplasm, binds to a motor protein and is transported along the cytoskeleton to the cell periphery. During transport, IGF2BP1 prevents beta-actin mRNA from being translated into protein. When the RNP complex reaches its destination near the plasma membrane, IGF2BP1 is phosphorylated by SRC. This releases the mRNA, allowing ribosomal 40S and 60S subunits to assemble and initiate ACTB protein synthesis. The monomeric ACTB protein then assembles into the subcortical actin cytoskeleton, which pushes the leading edge onwards. Binds MYC mRNA. Promotes the directed movement of cells by fine-tuning intracellular signaling networks. Binds to MAPK4 3'-UTR and inhibits its translation. Interacts with PTEN transcript open reading frame (ORF) and prevents mRNA decay. This combined action on MAPK4 (down-regulation) and PTEN (up-regulation) antagonizes HSPB1 phosphorylation, consequently it prevents G-actin sequestration by phosphorylated HSPB1, allowing F-actin polymerization. Hence enhances the velocity of cell migration and stimulates directed cell migration by PTEN-modulated polarization